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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Particle gravitation theories of the Hoyle-Narlikar type 

C. B. G. h'IcINTOSH 
Mathematics Department, Monash University, Clayton, Victoria, 31 68, 
Australia 
.MS. received 22nd July 1970 

Abstract. In the Hoyle-Narlikar particle theory of gravitation, - the mass 
functio? at a point X due to a particle a is defined as W Z ( ~ ' ( X )  = - hjG(X, A)da 
where G(X,  A) is a Green's function which satisfies a simple wave equation. 
In this paper the coupling constant A is replaced by ha where h,  can be positive 
or negative. Two possible subsequent generalizations of the action of the 
Hoyle-Karlikar theory are suggested and the two resultant particle theories 
developed. One special case of one of these theories is examined in some detail, 
This has particles which contribute negative inertia as well as those which 
contribute positive inertia and all the ha such that lh,I = h. In this theory the 
gravitational 'constant' G is a function of position and can be positive or 
negative. 

1. Introduction 

to as HN) (1964b, 1966), the proper time a of the particle a is given by 
In  the particle theory of gravitation proposed by Hoyle and Narlikar (to be referred 

da2 = glAjr dxiA dxjA (1) 
where A is a typical point on the world line of a and has coordinates u t ~ ( i A  = 0, 1,2, 3). 
The gij are components of the metric tensor of the Riemannian space in which the 
world lines are embedded. The  mass function at a general point X due to a is defined 
as 

m(')( X )  = - X G(X,  A )  da (2) 
where X is a positive coupling constant and c ( X ,  A)  is a symmetric Green's function 
which satisfies the wave equation 

[?G(X, A)++RG(X, A )  = -a&)( -g)-'l2 (3) 
g being the determinant of the parallel propagators g iAjA .  The mass m, of the particle 
a arises from all the other particles of the universe and is given by 

m,(A) = 2 d b ) ( A )  = -A 2 G(A,B)db. (4) 
b i u  b # u  

The physical significance of the mass field is that mcU)(X)  is the intertia contributed 
by a particle a to another at the point X. The inertial mass of a particle is equal to the 
inertia contributed to it by all the other particles. 

The  action assumed by HN has the form 

J =  - x $ / m , d a  U = Ax2 u < b  i j G ( A , B ) d a d b .  ( 5 )  

The factor & arises because each G(A, B )  is shared by two particles a and b. The 
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where 

These equations are conformally invariant under the mapping 

da* = Qda.  

The terms on the left side of (6) involving derivatives of m(u)  have no equivalent in 
the usual form of the field equations of Einstein whilst the other terms obviously do. 
They do, however, have equivalent terms in the conformally invariant version of 
Einstein’s equations, i.e. equations (29-31). The  portion of (6) equivalent to the 
gravitational constant G in Einstein’s equation is 

and it is a function of position and time. 
Deser and Pirani (1965, 1967) comment on the sign of G in the HN theory and 

point out that it could be changed by replacing the coefficient & in the wave equation 
(3) by a negative number although this cannot be done if the theory is to be kept 
conformally invariant under (8). They then discuss the sign of G in the Einstein 
theory. In  this paper, however, the restriction of conformal invariance will be kept 
in general. 

Islam (1967) states that his work implies that the sign in the definition (2) of 
d a ) ( X )  is correctly chosen. A change of sign does not affect the geometry or geodesics 
of particles but makes the sign of G, given by (9), negative. However the inertial 
mass mu of particle a and the inertia contributed by it are both now negative. Thus 
a positive (or negative) G means that the masses are positive (or negative) though in 
Einstein’s field theory the possibility arises of G being positive whilst the masses are 
negative and vice versa. In  this last case, however, the geometry is different from the 
usual one. 

Hawking (1965) discusses briefly the action 

a < b  J J  

where qa and qb are gravitational charges analogous to electric charges. He requires 
that there are the same number of positive and negative particles and suggests that 
the resultant theory is an alternate to the H N  theory. However he does not extend 
the discussion to include any particle equations. 
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HN (1967) suggest that their action could be written as 

w u w , e ( A ,  B )  da db J = 22 
a c b  

where w,  is a numerical weight factor associated with particle a such that particles 
with different masses could be included in the theory. They make no suggestion that 
the w, could be negative as well as positive and, for simplicity, work with (5). 

The  author has suggested an extension of the HN theory such that mass functions 
of two types are included in the theory (31cIntosh 1970 to be referred to as I). 
Particles of one type have a negative sign in (2) and contribute positive inertia, and 
those of the other type have a positive sign in (2) and contribute negative inertia. In  
this paper the mass function (2)  is generalized so that particles can contribute inertias 
with different signs and magnitudes. Two different possible subsequent generaliza- 
tions of the action J are suggested such that two possible theories result. One special 
case of one of the theories is examined in some detail. 

2. Basic equations 
Instead of (Z), define the mass function at the point X due to particle a by 

nz@)(X) = -ha G(X,  A )  da 

where e ( X ,  A) satisfies the wave equation (3).  Here h, is some constant scalar factor 
associated with particle a and can be either positive or negative such that nz@) is 
either positive or negative. Then define 

ma(A) = 2 mCb)(A) 
h # a  

such that ma arises from the mass functions of all the other particles in the universe. 
This is the same as (4) except that it can be positive, negative, or zero. The sign of (13) 
depends upon the position and magnitude of the other particles. 

There are now two obvious ways of redefining the action J .  These will be called 
J I  and JII where 

J I  = - + ; / m , d a  ( 14-1) 

and 

JII = -4 2 / &ma da. (14-11) 
U 

From (12)-(14) 

(1 5-1) 

which can easily be seen by writing out a number of terms of the series, and 

JII = 2 2 h,hh 1 1 6 ( A ,  B)  da db. (1 5-11) 
a <  b 

This last equation is the same as (10) with A, = qu or (1 1) with X u  = w',. 
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When variation of these actions with respect to g t j  is carried out and SJ = 0, two 
sets of particle equations are formed and two particle theories, labelled I and 11, 
result. The  variations follow the same lines as in the HN theory and thus the working 
will not be repeated. Such variation gives from JI the particle equations I :  

2 2 $(; + L) H(a, b) i j  = -3Ti j  
a < b  a A, 

and for JII the particle equations 11: 

2 2 H(a, b)ij = - 3 T(A)ij 
a < ! l  

H(a, b ) t j  being defined by (6), T i j  by (7)  and 

dui daj  
T(A)" = 2 1 Aam,S4[ -g]-li2 - - da 

U da da 

(16-1) 

(1 6-11) 

where obvious abbreviations have been made. Both of these theories are conformally 
invariant under (8). 

If all the A, are equal to A, both of these theories revert to the original HX theory. 
Direct particle electrodynamic and C-field terms could be added to either theory 

as with the HN theory though the addition of C-field terms would mean that the 
conformal invariance is lost. 

3. Particle theories I and IA 

G in (9) is replaced by 
In  the particle theory I with action .TI, ma of (13) is the mass of the particle a. 

- 1  

(18) 

The factor 4 ( l /huT  I/&,) arises in the calculations as $(A,+ Ab)/&A,, .  T f ' ( X )  can be 
positive, zero or negative at X. 

The following special case of theory I will be called theory 1,s. This is the case 
LT here there are both positive and negative m(,) and where all the A, have the same 
magnitude, A. Let the a for which is positive (i.e. Au positive) have a subscript 1 
and let the a for which m(") is negative (i.e. A, negative) have a subscript 2. Then 

d a v ) ( X )  = (-  1)vA/8(X, A,) da, v =  1 , 2  (19) 

where there is no summation over the vs. Here A has replaced- A, whenever A, is 
negative, that is 

The particle equations (16-1) then become 
/Aut = 2 for all a. (20) 

there 
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which is the same as ( 7 )  since 

2' ma = 2 ma,+ 2 man' 
a a1 aa 

Equation (21) is the same as (1) of paper I with A, = A, = A. 
The effect of having masses which contribute either positive or negative inertia on 

the equations (21) compared with (6) is to reduce the magnitude of the terms. The  
left hand side of (21) is the difference between two positive terms and the right 
hand side is the sum of a number of positive and a number of negative terms, 
though which individual term is positive and which is negative is not apparent 
since, for example, each mal is not necessarily positive. Notice that there are no 
cross product terms of a,  and a2 type particles in the left side of (21). Also 

4. Particle theory I1 
In  the particle theory 11, the mass of the particle a is defined as 

and can be positive, negative, or even zero. A, here is HS ' s  numerical weight factor 
ZL', or Hawking's charge 4,. The action J,, of (15-11) is analogous to the action of 
the electrodynamics theory of HN (1964a, 1967). 

If as above there are particles a, contributing positive inertia and particles a2 
contributing negative inertia, then (16-11) has the form 

c H(a1, b1)z3+ 2 2 H(a2, b2)*,-& ' 2  c H(a1, Q 2 ) t J l  = -3T(A)*, (25) 
a1 i b l  a? 4 b z  a1 <a2 

such that the left side can still be negative. Indeed if there are NI particles of type 
a ,  and AV2 of type a2, then there are +Nl(Nl - l), +N2(N2- 1) and 1V11V2 terms in the 
three summations on the left side. The  A, appear explicitly in T(A),, but appear 
implicitly in the H(a,  b)i, terms in that they help determine the 

G here is 

G = v . [ ~  2' m(a)m(b) (26) 
a < b  

and can be positive or negative, 

5. Smooth fluid approximation 
HN make a smooth fluid approximation of their theory by writing 

m ( X )  = mca)(X) 
a 

4m2 2: 2 2 m(a)m(b) 
a < b  
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i.e. terms of the type are neglected in comparison with those of the type 
v ~ ( ~ ) m ( ~ ) ,  b f a. These terms may be regarded as ‘self-action’ terms. On a macro- 
scopic scale, with the number of particles very large, the approximation is very good 
and the particle theory and the resultant field theory give very close predictions. The 
approximation cannot be made with any accuracy on a microscopic scale and on this 
scale the two theories have vastly different predictions. Under the approximation 
the particle equations (6) become the field equations 

where 

and 

Hij = -3hTi, (29) 

H,, = +(m2(Rlj -$gi,R) +2m(m;,, -g,,Tjm) -4(m;,mij -igi,m,,m;k)) (30) 

These field equations thus do not hold in the neighbourhood of the particles. 

equations (16-I), (28) would have to be replaced by a relationship of the type 
In the particle theory I, however, to obtain field equations from the particle 

in which case the field equations (29) again result. This does not appear very 
satisfactory. 

Here define 
The theory IA, however, does have an acceptable form in the smooth fluid case. 

nz, = 2 m(av) v =  1,2 ( 3 3 )  

v =  1,2  (34) 
av 

+mL.2 2 m(av)m(bv) 

av < sv  

where m, is positive and m2 is negative. (21) then becomes 

where H,,, and TviI are (30) and (31 )  with m and a replaced by m, and a, respectively. 
This is the same as equation (2) of paper I with h, = X2 = A. The particles are thus 
being approximated to by two fluids, one for the a,-type particles and another for 
the a2-type particles. 

In  theory I1 under the smooth fluid approximation, the particle equations (16-11) 
become the field equations 

where 
Hij = -3T(X)ij ( 3 6 )  

da. 
a da da 

(37) 
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The gravitational ‘constant’ G is 

G = u.(m12 -m22)-1 x = constant > 0 (39) 

G > ( < ) O  for m12 > ( <)m22.  (40) 
such that 

As a hypersurface with 

therefore T t j  must be zero. 
identities 

G > ( < )  0,  G -+ + ( - ) C O .  

m12-m22 = 0 is approached from the region with 
On such a hypersurface the left side of (38) is zero and 
When the covariant derivative of (38) is taken and the 

Ri”,;i = (mv;%J -gi inm,); i  (41) 
. .  

are used, it follows that 

hT‘jii = {(m1mlLi - m2m2;i)XT+ (mlm2ii- m 2 m l ; i ) ( m 2 ~ m l  - m,gm,)} 
x (m12 - mz2)-’. (42) 

gii* = n2gti my* = rti,,/Q, (43) 

These equations are conformally invariant under the mapping 

If treated just as a field theory, (38) could have been derived from the action 

7. Special conformal frames for theory IA with G constant 
HN have shown that in their theory a particular conformal frame can be chosen 

in the case of the smooth fluid approximation equations so that G* = R2G is a 
constant and that in this frame the Einstein field equations (with zero cosmological 
constant) result. For equations (38) there are two special conformal frames in which, 
after the mapping (43) is made, 

(45 ) G* p~ = x{m:2 - m2 *2 -1 

is constant. These frames will be called I and 11. 
Frame I .  In  this frame 

ml* = constant x m2* = constant 

a result which by (43) can only occur when 

m, = constant x m2 

though the m, need not be constant. Thus G* is constant and the field equations (38) 
map into the Einstein field equations 

(47) 

Rii* -+gii*R* = -KT ‘i * (48) 
where 

K = 6hG*/x. 

Frame II .  If (46) does not hold, Q can be chosen as 

(49) 
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such that 

For the remainder of this section the stars will be dropped. I t  follows from (51) that 

G* = cl(ml*2-m2*2)-1 = constant. (51) 

mimi;, = mama;i (52) 

( 5 3 )  
and 

m l ; l m l ; j  + m l m l ; t j  = m2;1m2;3 + m2m2;i3* 

Equations (38) then become 

( x G - I / 6 ) ( R t ,  -&g,,R) = -AT,, + ( -  1)Y+i(nly;,mt;J-~g,3mL;hnZ1:k} (54)  
v = 1,2  

or 
Ri j - ig i jR  = -K(Tij+S,j) 

where 
K = 6hG/a 

S,j = (x/XG)(B;,B;j - i g i j O ; h O ; k )  

and 

A being constant. The covariant derivative of (55, 57) gives 

0 = In A(m, + m2) 

(55) 

Ti5 ; j  = --,";:j = -(a/hG)O'no. (59 )  
The field equations (55) are the scalar-tensor equations used in the Dicke version of 
the Brans-Dicke theory (Brans and Dicke 1961, Dicke 1962), in the HK field theory 
(Hoyle and Tlarlikar 1963) and in similar theories. 

In Dicke's theory, it is also required that 

T,;j = -+MOiT M = 2 ( 1 + 2 ~ / 3 ) - ' "  (60 )  
Dicke uses the scalar X where 

T o  enable (55, 57) to include the HN field theory, it is necessary to define 

C = i0 = ilnA4(m,+m,) (63)  

s,, = -f(C;,C;, -$gilC;kC;h-) f = u/hG. (64) 
so that 

The i in (63) is required to obtain the scalar tensor S,, with negative energy density. 
In  their field theory it is also required that 

Tij;j = fci [?C = Ci j k , k  (65)  
wherejk = puk is the mass current. 

Thus the interesting result is obtained that the field equations (38) map into 
either the Einstein equations or into the scalar-tensor equations (55, 57) such that in 
both cases after the mapping is made, G is a constant. 
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8. The sign of G in theory IA 
In  the H N  particle theory, Hoyle and Narlikar (1966, 1967) and Islam (1967, 1968) 

examine the geometry in the neighbourhood of one particle. Islam (1970) extends 
this work and shows that there exists a static solution for two isolated particles. The 
metric for this solution takes different (though always axially symmetric) forms for 
different special conformal frames. In  the two frames which Islam discusses, there 
exists a two dimensional hypersurface enclosing the two particles such that G is 
positive outside, negative inside (in the neighbourhood of the particles) and tending 
to 5 cc on the hypersurface. He  also shows that at least one of the curvature invariants 
is infinite on the hypersurface so that the singularity is not removable by a coordinate 
change. 

Islam’s work can be carried over into theory IA, even in the case when one of the 
isolated particles contributes positive inertia and the other contributes negative 
inertia. As the details are very similar to those in Islam’s paper, they will not be 
reproduced here. A static solution for the two particles does exist and if, say, the 
particles are in a region where G is positive, there exists a two dimensional hyper- 
surface surrounding the particle which contributes positive inertia such that G tends 
to 2 m on this hypersurface and is negative inside. G is positive, however, in the 
neighbourhood of the other particle. 

The  physical nature of the hypersurfaces in Islam’s case and in this case have not 
yet been investigated. 

On the macroscopic scale, the theory IA has regions where G is positive and 
other regions where G is negative. As intermediate hypersurfaces are approached, 
G --f = a. The nature of such hypersurfaces also remains to be investigated. N o  
similar hypersurfaces exist in the HN theory on the macroscopic scale. 

9. Discussion 
in (2) is generalized by the definition (12), two forms 

of a generalized action, JI and JII, are made and two particle theories then developed. 
The  definition JII in (15-11) follows the same lines as HN’s theory of electrodynamics, 
their suggested action (1 1) and Hawking’s suggested action (IO). Thus this generali- 
zation may seem to some readers the only correct generalization. 

At various points in the papers by H X  and by Islam on the particle gravitational 
theory, the authors refer to the case when the negative sign in the definition of (2) is 
replaced by a positive sign and then discuss the resultant effects of this substitution. 
The  action however is kept in the same form. For example, Islam (1968) defines 

After HN’s definition of 

It was with this in mind that the theory of paper I was developed. This was changed 
slightly to theory I derived from the action JI of (15-1). 

The most interesting case in theory I is when both particles contributing positive 
inertia and those contributing negative inertia are included and the definition (20) 
for the X is made. The  resultant particle equations have the same mathematical 
appearance as those in paper I with XI = h2 but their development is slightly different. 
When the smooth fluid approximation (33,34) is made of these equations, the resultant 
field equations have the interesting property that special conformal frames can be 
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chosen so that (35) map either into Einstein’s field equations if (47) holds or otherwise 
into the scalar-tensor equations of the HN or Dicke field theories. Thus the equations 
(33) play an important mathematical role in that they are the conformally invariant 
version of both the Einstein and the scalar-tensor field equations. 

A, in theory I does not have a direct physical interpretation except as a coupling 
factor associated with particle a. In  the special case of theory IA, X is the same as the 
HN coupling constant in (2). In  theory 11, A, can be interpreted as a weight factor 
associated with a or as the gravitational charge of a. 
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